

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

28

Abstract— E-customers are highly attracted towards web

services in E-business Environment. The rapidly emerging

technology of Web services paves a new cost-effective way of

engineering software to quickly develop and deploy Web

applications by dynamically integrating other independently

developed Web-service components to conduct new business

transactions. Customers are highly interested to use web

services. Millions of users can participate and collaborate for

their own interests and benefits. Discovery for the same is very

important issue. In this paper we have done the extenive

literature survey on the service discovery requirements from the

service consumer’s perspective and studied a conceptual Model

of homogeneous Web service communities. The homogeneous

service community contains two types of discovery: the search of

similar operations and that of composite operations and

dynamic Web Service Selection Strategies, Second, we describe

a similarity measurement model for Web services by leveraging

the metadata from WSDL, and graph-based algorithm to

support both of the two discovery types. We studied Clustering

mining for Discovery of homogenous and distinct web services.

We have done the literature survey to maintain the security

while dealing with web service by using some WS security

standards.

Index Terms— WSDL –Web services Descriptive Language

WS – Web Services. UDDI –Universal Description Discovery

and Integration RSS – Rich Site Summary.

I. INTRODUCTION

Web Services Manager (WSM) is component of SOA

Suite. This component is used to secure Web Services and to

monitor activities performed on protected Web Services.

The Web keeps rapidly growing in recent years. Current

Web has been a “user-centric” environment where millions

of users can participate and collaborate for their own

interests and benefits .The services computing paradigm

together with the proliferation of Web services make the

Internet as a huge resource library, and millions of users can

participate and create more value-added services by means

of service discovery and composition [1]. WEB service is

defined as a software system designed to support

interoperable machine-to-machine interaction over a

network .Put in another way, Web services provide a

framework for system integration, independent of

programming language and operating system. Web services

are widely deployed in current distributed systems and have

become the technology of choice for implementing

service-oriented architectures (SOA). In such architectures

[2]. Existing SOA technologies, including Universal

Description, Discovery, and Integration (UDDI) and service

composition languages (such as BPEL4WS), have fostered agile

integration by simplifying integration at the communication,

data, and business logic layers. Furthermore, by leveraging

efforts in semantic Web services, service composition

frameworks made a forward step on enabling automated

support for service description matching. Service discovery

is a significant activity in Services Computing paradigm.

Efficient discovery plays a crucial role in conducting further

service composition. With the ever increasing number of

services over Internet, more and more service consumers

(including nonexpert users, Small and Medium Enterprise,

and transient business partners of specific

opportunities/interests) can participate in the composition

activity1 [1]. Meanwhile, a key problem also matters

locating the desired services efficiently. Although existing

discovery techniques have produced promising results that

are certainly useful, they may not well aligned with the needs

of Internet-scale environment. First, searching Web services

via some public UDDI registries is mainly based on the

keywords involved in query and matches them with the Web

service descriptions. As the keywords are not able to capture

the underlying semantics, they may miss some results and

return a lot of irrelevant ones as well. Second, the users

would like to specify their requests more precisely rather

than just keywords. Actually, searching Web services is

searching for the operations offering some functionality, and

current discovery usually explores details of the service

operations. The service consumers have to browse each

returned results in detail and check if they meet their

requirements or not. Nevertheless, investigating a single

operation usually needs several steps. Hence, the more

service providers emerge, the heavier burden it brings to the

consumers. Third, the Web services are developed and

maintained by their providers. For some reasons, such as the

market competitions and cost control policies, the providers

may update or remove their Web services at any time. Once

the Web services are modified or even no longer available,

the service consumers have to repeat the discovery process to

find new appropriate services. To best of our knowledge,

current discovery approaches cannot deal with the

ever-changing Web services. Due to the reasons above, we

argue that current service discovery significantly prevents its

ubiquitous adoption among Internet users. Various search

engines automatically trawl a set of Web pages and classify

them into groups. Moreover, the search engine can even

retrieve the access path according to the hyperlinks, which

looks like the “composition” of the Web pages. Such search

manner makes Web search engine widely adopted by the

Internet users. Similarly, in the area of Web service

discovery, once the consumers drill down all the way and

Web Services Manager Model
D. R. Ingle, Dr. B. B. Meshram

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

29

find the Web service inappropriate for some reason, they

may prefer being able to find a set of similar operations that

takes similar inputs/ outputs to the ones just considered,

instead of laboriously browsing them one after another [2].

What’s more, they may intend to find operations that can be

composed with the current ones being browsed. Therefore, it

seems to be reasonable to support search for similar Web

service that can do the job of clustering, classification,

match-making, and composition. Such manner will be more

free and efficient for the consumers to find their desired

services. Another promising hint comes from the

innovations of Web 2.0 wave. In our investigation, the most

prevailing Web 2.0 communication mechanism is not the

complex “centralized registry,” but lightweight manner such

as the RSS With the feeds, the users are able to organize

several Web pages such as news or Weblogs to a specific

topic/interest and subscribe them. Once the resources are

changed or updated, the RSS/Atom will notify their

subscribers. Similarly, if Web services can be organized into

RSS/Atom feeds and subscribed by the service consumers, it

will release the work of locating the ever-changing Web

services. On the other hand, since most current Web

browsers (such as Microsoft Internet Explorer, Firefox, and

Safari) all support RSS/Atom, it is then feasible to provide a

universal and convenient channel for the service consumers,

which allows them to easily locate desired Web services and

further participate in the service composition. XML based

SOAP messages form the basis for exchanging information

between entities in Web services systems. The information

contained within these SOAP messages may be subject to

both confidentiality and integrity requirements. XML

Signature and XML Encryption are used to provide integrity

and confidentiality respectively. Although these two

standards are based on digital signatures and encryption,

none of them define any new cryptographic algorithms.

Instead, XML Signature and XML Encryption define how to

apply well established digital signature/encryption

algorithms to XML.

This includes:

• A standardized way to represent signatures, encrypted data,

and information about the associated key(s) in XML,

independent of whether the signed/encrypted resource is an

XML resource or not.

• The possibility to sign and/or encrypt selected parts of an

XML document.

• The means to transform two logically equivalent XML

documents, but with syntactic differences, into the same

physical representation. This is referred to as

canonicalization. As both XML Signature and XML

Encryption rely on the use of cryptographic keys, key

management is a prerequisite for their effective use on a larger

scale. Therefore, the XML Key Management Specification

(XKMS) was created to be suitable for use in combination

with XML Signature and XML. Our aims to provide simpler

and more efficient Web service discovery. In this paper we are

going provide the best discovery methods of web services that

e-customer look for. At the same to we are trying to maintain

the security level for the same. Section 2 deals with literature

survey on web services, Section 3deals with securing Web

Services that contains: Discovery of Homogeneous Web

Service, Clustering Task and Security Implementation.

Section 4 deals with performance management and section 5

conclude the results.

II. WEB SERVICES

The Web service discovery is a hot research topic in the

past a few years. Zhang et al. indicate that the service

discovery and composition play the crucial role in the area of

services computing [1]. To the service consumers, finding

similar Web services and aggregating them in a universal

access channel is a key requirement. There are some

important research topics related to this issue. We classify

the current discovery approaches into two categories: the

syntactic based discovery, which involves the techniques of

UDDI based search, text document search, schema

matching, and software component matching; and

semantic-based discovery, which is mainly based on

ontology. UDDI-based search. In the initial Web services

architecture, UDDI works as the broker to register Web

services into corresponding categories. However, to the best

of our knowledge, the public UDDI never works as expected.

In January 2006, the shutdown of UDDI Business Registry

(UBR) operated collaboratively by Microsoft, SAP, and IBM

has confirmed the intrinsic problem of the Internet-scale

registry-based service discovery. The core reason of public

UBR’s failure is that the registry-based mechanism is “too

complex” for the consumers. UDDI is mainly based on

keyword search, which may bring several irrelevant results

so that the consumers have to do the “view-select-request”

process several times. It is too overwhelming for the

consumers to simply get their desired services. Moreover,

once the discovered services are no longer available, the

discovery process has to be restarted. Thus, we cannot expect

that these service consumers can utilize UDDI for service

provisioning. The fact of UBR’s shutdown has demonstrated

that the “Internet-scale” public UDDI cannot be adopted by

the huge number of Internet users. In our work, we

investigate the service discovery problem from the service

consumer’s perspective and propose an approach to

clustering the homogeneous Web services. It alleviates the

consumers from tedious and time-consuming discovery step.

With a much easier and universal channel (RSS/Atom) for

the service consumers, they are able to subscribe and

organize Web services just like Web pages, and track the

updates and changes by means of service feeds. Text

document search. As Web services are specified in an XML

document with an accessible URL, the keyword based text

document search is an intuitive approach. In IR community,

document matching and classification is a long-standing

topic and widely use in most search engines. Due to the fact

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

30

that the great success of search engines promotes the

Web-related search very much, it might be a natural idea to

employ the current search techniques for similar Web

service discovery. However, most of current information

retrieval models are designed for Web pages crawlers and

may not work well for Web service discovery due to some

key reasons. First, Web pages may contain long textual

information. However, Web services have very brief

syntactic descriptions (from WSDL files). The lack of

textual information makes keyword-based search models

unable to filter irrelevant search results, and therefore,

become very primitive means for effectively discovering

Web services. Second, Web pages primarily contain plain

text structures that allow search engines to take advantages

of information retrieval models like TF/IDF. However, Web

services contain much more complex structure with very

little text descriptions provided either on UBRs or service

interfaces. It then makes the dependency on information

basic retrieval techniques very infeasible. Third, Web pages

are described using standard HTML with predefined set of

tags. However, Web service definitions are not fully standard

as they are developed by independent vendors. Web service

interface information such as message names, operation,

and parameter names within Web services can vary

significantly which makes the finding of any trends,

relationships, or patterns within them very difficult and

requires excessive domain knowledge in XML schemas and

namespaces [3]. Therefore, the current text document search

approaches are insufficient in the Web service context.

Schema matching. In the database community, the problem

of automatically matching schemas investigates the clues of

underlying semantics from the schema structure and

suggests the matches based on them [18], [19]. In the Web

service discovery, schema matching is also employed. In

[17], the authors proposed an approach to measuring the

similarity between two Web services based on their Tree Edit

Distance. However, we argue that there is a big obstacle to

apply schema matching to Web service discovery: the

operations in a Web service are typically much more loosely

related to each other than the tables defined in a schema, and

each Web service in isolation has much less information

than a schema. Hence, it will be difficult to retrieve the

underlying semantics from the schema of WSDL. In current

WSDL files, the corresponding information is not available.

To the best of our knowledge, the WSDL V 2.0 will adopt the

semantic annotations for the data types and specifications.

Ontology-based discovery. A very important direction of

current Web services research is the semantic Web services

group, such as OWL-S[24], WSDL-S [25], and SWSO[26].

It means that it will generate more explicit semantic

categorization. In fact, tags are currently very popular

descriptions, and can be obtained from those social

networking Websites such as del.icio.us and flickr.

Certainly, to realize the descriptions of service by tags, it still

requires slight and more careful and consistent design,

which is beyond the scope of this paper. In our opinion, we

prefer relying on lightweight semantic metadata annotations

by making use of tags, folksonomies, and simple taxonomies

to describe the semantics of services [14]. The use of

tag-based descriptions greatly simplifies the users,

compared to the much heavier ontology-based approaches,

such as OWL-S. To the best of our knowledge, we have

found that some recent works [21],[22]. Another important

related work worth mentioning is Woogle [2], a Web service

search engine developed by the University of Washington.

Woogle employs an unsupervised approach to retrieve the

underlying semantics from WSDL and measure the

similarity between operations and input/output. Similar to

woogle, our approach adopts the semantic clustering

algorithm to generate the meaningful concepts. As the

concepts clustering results significantly impact the

similarity measurement, we need to consider some

improvement. Woogle provides a technique to split and

merge the clusters by considering the cohesion and

correlation. It can remove some terms and improve the

clustering results. However, the Web services are developed

by independent providers, the parameter naming heavily

relies on the developer’s personal whim. Once a term in

cluster A is associated with more than half of the terms in the

cluster B, these two clusters will be merged by such

technique. Therefore, in the phase of removing the noise

terms, we apply the matching score by employing some

taxonomy (use social folksonomy in our experiment), while

woogle just processes by measuring the co-occurrence-based

association rules.

III. SECURING WEB SERVICES

This section contains three units:

1. Discovery of Homogeneous Web Service

2. Clustering Task

3. Security Implementation

In first part we are identifying the homogeneous &

distinct web services by using mining algorithm by

measuring the co-occurrence of terms from the various

sources [1]. In second unit we use clustering algorithm to

cluster the homogeneous web services [22] and in last unit we

identify the requirements to maintain the security [12].

A. Discovery of Homogeneous Web Service

In this unit service consumer deals with service community,

service container is nothing but the local database which is use

to store all information related web services classification and

indexing is used to determine the similarity with the help of

semantics. It employs a crawler to retrieve the WSDL files

from the service registries and store them into a local database

as the metadata. The component Metadata Parser analyzes

each WSDL file, filter the irrelevant information, and retrieve

terms from the input/output data types as shown in fig. 1.

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

31

The Clustering Agent clusters the terms into concepts,

and then, finds the corresponding Web operations as well as

the potentially compatible ones. These operations are

maintained in a graph, so we need to make index of them

with the Web Services they belong to. As discussed before,

considering the usability of the users, we adopt the Atom

feeds (instead of popular RSS, for Atom is more suitable to

process structured XML than RSS), which is widely used for

news aggregation and subscription. In Service Container,

the Feed Manager component attaches the metadata to the

Atom feeds and indexes the feeds to the corresponding Web

services by using the standard Atom publish protocol as

shown in fig. 2. Here, it is necessary to make the binding

between the Atom feeds and WSDL, to ensure the

consistency with the original Atom syntax and semantics.

To the best of knowledge, in [20] and [24], the authors

explicitly integrated atom feeds to a service description,

including mapping the metadata of WSDL to the Atom feeds

and the feed publish protocol over HTTP. This provides us

very useful information in our implementation. We briefly

describe the main design ideas. Due to the functionalities

that Service container provides, we adopt two feed types.

The first one is the Web service entry, which is used to

subscribe exactly one Web service. This element represents

Web service by binding the metadata of the Web service to

an Atom feed. For example, the “Atom Summary” is

attached by the useful metadata from WSDL, including the

textual description of input/output and operation, which can

be used for indexing the Web services. The second feed type

is the topic feed, which is used for subscribing a

homogeneous Web services (exactly their operations). The

topic feed aggregates a set of homogeneous Web services

into a group. The topic feed contains the metadata for a list

of Web services, each of which corresponds to a service

entry. The relationship between service topic feed and

service entry is consistent with that defined in Atom

specification. Service entry and topic feed correspond to the

generic Atom feed and entry. Each entry in the feed is

mapped to a single Web services under a particular. First,

the users would like to get the set of “single” Web services

with similar functionalities. To the best of our knowledge,

the functionalities offered by a Web service are usually

reflected by its operation. For example, the weather report

services may provide operations such as

“GetWeatherByZipCode” or “Get Temperature.” Therefore,

the problem can be viewed as “searching for similar

operations.” Intuitively, the operations are similar if they

have similar inputs, generate similar outputs, and the

relationships between the inputs and outputs are also similar

[2]. Second, if no single service operation is qualified for the

request, the users may also want to retrieve a sequence of

operations that can be composed together. It means that the

outputs generated by one service can be accepted as the

inputs of another service. For example, suppose two Web

services S1 and S2: S1 is an “Address Querying” service

which can output the city name according to the given zip

code (e.g., the output is “Zip Code To City”), and S2 is a

“Weather Forecasting” service which can return the weather

forecast by the given city name (e.g., the input is “City,”

“State”). S1 and S2 can be composed together in case that

the city name is unknown. Such process can iteratively

proceed to construct “operation hyperlink” until the desired

result is fulfilled. Both of the two discovery types mentioned

above are essentially related to the similarity measurement

of Web service operations, inputs, and outputs. Like

traditional clustering approaches for Web pages or topics,

we are going to employ similarity measurement to retrieve

the homogeneous Web services. Then, some technical

challenges need to be solved. As is known to all, semantics

means crucially to determine the similarity. But in current

WSDL specification, neither the textual descriptions of Web

services and their operations nor the names of input/output

parameters completely convey the underlying semantics of

Publish their Web services

Internet

Service

Provider

Service

registries

Local

Database

Crawler to retrieve the WSDL

files from the service registries

and store as Meta data

Fig. 2. Storage of metadata

Homogeneous Service

Clustering

Service

Provider

Service

Provide

r Service

Provider

Service

Provide

r

Service

Containe

r

Classifying &

Indexing

Publish

Service

Community

Service

Consumer

Fig. 1 Service Container based discovery

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

32

the service operation. Therefore, searching for similar Web

services is much more challenging. To efficiently match the

inputs/ outputs of Web service operations, it is then

important to get their underlying semantics. By

investigating the metadata from the WSDL structure.

Finally, as Service container is supposed to be an aggregator

of a group of homogeneous services, such organization style

is similar to the news group that can be subscribed with RSS

or Atom. Moreover, with the RSS/Atom, the consumers will

be notified once their subscribed Web services are changed.

Therefore, we need to bind the WSDL to the RSS/Atom

feeds while considering the semantic consistency.

Particularly, we find that the current Atom specification has

already defined some useful elements for Web service

discovery and subscription. For example, each Atom entry

has a unique ID, while a Web service has also one to identify

itself while regardless the version, location, and invocation

information. So, the entry ID is useful when subscribing the

“service feed.” Another example is “atom link,” which is

used for the entry and feed. It explicitly defines a mechanism

which can flexibly attach some customized metadata into

RSS. Thus, when the entry is a WSDL file or OWL-S

represented by RDF, we can then import several “Atom

link” to describe the MIME types. The service consumer can

retrieve these data in a standard manner via HTTP. Our

approach tries to combine multiple sources of evidences to

determine the similarity between Web services. We describe

a mining algorithm that clusters metadata (including input/

output names) from a collection of Web services into some

semantically meaningful concepts. By comparing the

concepts, they belong to, and considering the similarity of

the descriptions of the operations and the entire Web

services, we can have a good similarity measurement.

Besides the similarity measurement, we may need a search

model. Within the Service container, we hold two types of

search: single similar operations and compatible operation

sequences. Thus, the search model is expected to be able to

process both of the two types, and promise high efficiency.

we merge these two types by employing an algorithm based

on a Directed Graph/Huffman code. We make each

operation as a vertex, maintain the composition

opportunities as directed edges, and assign the weight of the

edge with similarity matching score between inputs and

outputs. Then, the search for the single similar operations is

transformed to the traversal of all vertexes, and the search of

compatible operations is transformed to find the

corresponding paths. [1]

B. Clustering Task

A Web service is described in an XML-based document,

called WSDL. The WSDL specifies the service

implementation definition and service interface definition

the service implementation definition describes how a

service interface is implemented by a given service provider,

and the service interface definition contains the business

category information and interface specifications that are

registered as UDDI tModels. Input message and one output

message. Note there is a set of operations in a WSDL.

Input/Output: 8input 2 Mð8output 2 MÞ is a message m.

Each input and output contains a set of parameters for an

operation defined by the message element and the type

element used in the message (for representing the complex

data types). . a message m 2 M has optionally iði _ 1Þ parts,

represented as m ¼ fd1; d2; . . . ; dkg, where dj 2 D; 1 _ j _ k.

From the definition, regardless of the invocation

information in WSDL that is useless for similarity matching,

such as the binding and the port, we can identify three types

of metadata from WSDL. First, we note the plain textual

descriptions, which describe the general kind of service that

is offered, for example, service related to “weather

forecasting” or “travel agency.” Second, we note the domain

of the operation that captures the purposed functionality,

such as “Get Weather ByZipCode,” “Search Book,” or

“Query Airplane Timetable.” Finally, we find the data type

deriving from the input/ output. The data types do not relate

to the low-level encoding issues such as integer or string, but

to the semantic meanings such as “weather,” “zip code,” etc.

a) Estimating the Parameters by Huffman Code

In terms of similarity measurement, the service descriptions can

be easily determined by the traditional Term Frequency and

Inverse Document Frequency (TF/IDF) methods. However, the

similarity of operations and inputs/outputs cannot be determined.

On one hand, the parameter naming is mostly dependent on the

service provider/developer’s personal habit. Hence,

parameters tend to be highly varied given the use of

synonyms, hypernyms, and different naming rules. On the

other hand, inputs/outputs typically have very few parameters,

and the associated WSDL files rarely provide rich description.

We try to explore the underlying semantics of the

inputs/outputs in addition to their textual descriptions. First,

an intuitive heuristic is that the parameter names, which are

specified in the inputs/ outputs and operations, are often

combined as a sequence of several terms. Take the parameter

“GetWeatherByZipcode,” for example, the terms are specified

by their first letter capitalized {Get, Weather, By, Zip

code}.We cluster these terms into several concepts. In our

opinion, considering the terms with the concepts they belong

to May significantly improve the similarity measurement. For

example, given the two outputs {weather} and {temperature,

humidity}, they cannot be considered to be similar just by

checking with their names. But these terms are all related to

the concept of “weather,” they should be similar data types.

 Weather

Fig 3. Temperature details

Temperature Zip code

Celsius City

0

0

1

1

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

33

As shown in above figure 3: Huffman code can be used to

calculate the similarities for input. Supposed the requested input

parameter is “GetWeatherByZipcode,” we can find similar web

services which matches to our input by assigning o and distinct by

assigning 1 and add them into the local database (assign o & 1 to

the clusters).We can consider the term Weather according to that

we can find the related clusters in our database It is save in

database when we want the data related temperature then it will

then 0 only that is using BFS.

Weather Temperature Celsius

For Clustering the similar web services we used Clustering

algorithm K- Means Algorithm When clustering metadata

residing in the input/output data types into several meaningful

semantic concepts, we intuitively consider the words

co-occurrence. A common sense heuristic is that the words

tend to express the same semantic concept if they often occur

together [17]. In other words, similar data types tend to be

named by similar names, and/or belong to messages and

operations that are similarly named. Therefore, we can then

exploit the conditional probabilities of occurrence.

K- Means Algorithm:

The k-means algorithm is a simple iterative method to

partition a given dataset into a user specified number of

clusters, k. This algorithm has been discovered by several

researchers across different disciplines. This algorithm would

be used in the project for choosing the best investor for a

queried investor and vice-versa. In statistics and data mining,

k-means clustering is a method of cluster analysis which aims

to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean. This

results into a partitioning of the data space into Voronoi cells.

However k-means clustering tends to find clusters of

comparable spatial extend, while the

expectation-maximization mechanism allows clusters to have

different shapes. Standard algorithm: The most common

algorithm uses an iterative refinement technique. Due to its

ubiquity it is often called the k-means algorithm; it is also

referred to as Lloyd's algorithm, particularly in the computer

science community. Given an initial set of k means m1

(1),…,mk(1) (see below), the algorithm proceeds by

alternating between two steps. Assignment step: Assign each

observation to the cluster with the closest mean (i.e. partition

the observations according to the Voronoi diagram generated

by the means).

Update step: Calculate the new means to be

Update step: Calculate the new means to be the centroid of the

observations in the cluster.

The algorithm

is deemed to have converged when the assignments no longer

change. Commonly used initialization methods are Forgy and

Random Partition. The Forgy method randomly chooses k

observations from the data set and uses these as the initial

means. The Random Partition method first randomly assigns

a cluster to each observation and then proceeds to the Update

step, thus computing the initial means to be the centroid of the

cluster's randomly assigned points. The Forgy method tends to

spread the initial means out, while Random Partition places

all of them close to the center of the data set. According to

Hamerly et al., the Random Partition method is generally

preferable. b) Predicting the Similarity: In previous section, it

clustered the concept as the baseline to measure the similarity

for inputs/outputs. Now, we will compute similarity for the

Web service operations. As defined in Section 3.1, an

operation op is a three-tuple vector op ¼< nop; input; output >

, then given two operations opi; opj, we can determine the

similarity by combining the similarity of each individual

elements, respectively. First, we estimate the similarity of the

text description of operation and the Web services the

operation belongs to (represented by Nw), it can be achieved

by employing the traditional TF/IDF measurement. Next, we

estimate the similarity of the input and output by considering

the underlying semantics the input/output parameters cover.

Formally, it analyze the input as a three-tuple vector input ¼<

nin; Ci > (similarly, the output can be represented in the form

of output ¼< nout; Co >), where nin is the text description of

input names and Ci is the concept that associates with nin.

Then, the similarity of input can be done in the following two

steps:First, we evaluate the similarity of the descriptions of

input names by TF/IDF. . Second, we split nin into a set of

terms. Note that we should filter the terms related to outputs

(such as “Zip Code” in the input “City Name By ZipCode”).

c) Prototype Architecture we assume that the service

providers can publish their Web services on the Internet as

usual. Then, we employ a crawler to retrieve the WSDL files

from the service registries and store them into a local database

as the metadata. The component Metadata Parser analyzes

each WSDL file, filter the irrelevant information, and retrieve

terms from the input/output data types. Using the similarity

measurement approach described in Section 3, the Clustering

Agent clusters the terms into concepts, and then, finds the

corresponding Web operations as well as the potentially

compatible ones. These operations are maintained in a graph,

so we need to make index of them with the Web services they

belong to. Considering the usability of the users, we adopt the

Atom feeds (instead of popular RSS, for Atom is more suitable

to process structured XML than RSS), which is widely used

for news aggregation and subscription. In Service Container,

the Feed Manager component attaches the metadata to the

Atom feeds and indexes the feeds to the corresponding Web

services by using the standard Atom publish protocol For

example, the “Atom Summary” is attached by the useful

metadata from Here, it is necessary tomakethe binding

between the Atom feeds and WSDL, to ensure the consistency

with the original Atom syntax and semantics. To the best of

knowledge [20] and [24], the author’s explicitly integrated

atom feeds to a service description, including mapping the

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

34

metadata of WSDL to the Atom feeds and the feed publish

protocol over HTTP. This provides us very useful information

in our implementation. We briefly describe the main design

ideas. Due to the functionalities that Service Container

provides, we adopt two feed types. The first one is the Web

service entry, which is used to subscribe exactly one Web

service. This element represents Web service by binding the

metadata of the Web service to an Atom feed. We list the some

core mappings .WSDL, including the textual description of

input/output and operation, which can be used for indexing

the Web services.

 Service Consumer

 Crawling

 Sstoring

The second feed type is the topic feed, which is used for

subscribing a homogeneous Web services (exactly their

operations). The topic feed aggregates a set of homogeneous

Web services into a group. The topic feed contains the

metadata for a list of Web services, each of which

corresponds to a service entry. The relationship between

service topic feed and service entry is consistent with that

defined in Atom specification. Service entry and topic feed

correspond to the generic Atom feed and entry. Each entry in

the feed is mapped to a single Web services under a

particular topic as shown in fig. 4.

d) Dynamic Web Service Selection Strategies

AR-based Selection and Composability and AR

(CAR)-based Selection strategies. AR-based Selection

Strategy. The rationale behind the AR-based selection

strategy is to select an atomic WS for each incoming

operation of the composite WS so as to achieve maximum

reliability. At runtime, when an incoming operation arrives

at a configuration, we first sort the candidate WS operations

in no increasing order of the products of their reliabilities

and aggregated reliabilities of the destination

configurations. These WS operations are tried one at time in

the order until one gets successfully executed. This strategy,

called AR-based selection shown as below

CAR-based Selection Strategy. This selection strategy

considers aggregated reliabilities as well as the

composabilities of configurations in selecting atomic WSs. It

considers composable configurations whenever possible in

choosing a delegated operation. Between two WSs whose

destination configurations are composable (or otherwise), the

strategy prefers the one with higher product of its reliability

and the AR of the destination configuration.

C. Security Implementation

XML based SOAP messages form the basis for

exchanging information between entities in Web services

systems. The information contained within these SOAP

messages may be subject to both confidentiality and integrity

requirements. Although mechanisms at lower layers may

provide end-to-end security, these lower layer mechanisms

are often insufficient. This is due to the fact that a SOAP

message may be subject to processing and even modification

(e.g., removal/insertion of a SOAP header) at intermediary

nodes. The result being that the end-to-end security provided

by lower layer mechanisms Relying on lower layers for

end-to-end security may also cause problems if a message is

to pass through various networks utilizing different

transport protocols. Furthermore, security at the XML level

has the advantage of enabling confidentiality and source

integrity to be maintained also during storage at the

receiving node(s).XML Signature and XML Encryption are

Service Provider

Internet

GUI

Provide & Published

Crawler

Metadata

Fig. 4 Prototype Architecture

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

35

used to provide integrity and confidentiality respectively.

Although these two standards are based on digital signatures

and encryption, none of them define any new cryptographic

algorithms. Instead, XML Signature and XML Encryption

define how to apply well established digital

signature/encryption algorithms to XML.

This includes:

• A standardized way to represent signatures, encrypted data,

and information about the associated key(s) in XML,

independent of whether the signed/encrypted resource is an

XML resource or not.

• The possibility to sign and/or encrypt selected parts of an

XML document.

• The means to transform two logically equivalent XML

documents, but with syntactic differences, into the same

physical representation. This is referred to as

canonicalization. In order to be able to verify the signature of

an XML resource that has had its representation changed, but

still has the same logical meaning, it is essential that

canonicalization is performed as part of the XML signature

creation and verification processes. As both XML Signature

and XML Encryption rely on the use of cryptographic keys,

key management is a prerequisite for their effective use on a

larger scale. Therefore, the XML Key Management

Specification (XKMS) was created to be suitable for use in

combination with XML Signature and XML. The Web

Services Security (WSS) specifications aim to provide a

framework for building secure Web services using SOAP, and

consist of a core specification and several additional profiles.

The core specification, the Web Services Security: SOAP

Message Security specification [14] (WSSecurity for short),

defines a security header for use within SOAP messages and

defines how this security header can be used to provide

confidentiality and integrity to SOAP messages. XML

Encryption is utilized to provide confidentiality, while

message integrity is provided through the use of XML

Signature. Using these mechanisms, SOAP message body

elements, selected headers, or any combination thereof may be

signed and/or encrypted; potentially using different signatures

and encryptions for different SOAP roles (i.e., different

intermediaries and ultimate receiver(s)). Recall (from Section

II) that because SOAP message headers may be subject to

processing and modification by SOAP intermediaries, lower

layer security mechanisms such as SSL/TLS are often

insufficient to ensure end-to-end integrity and confidentiality

for SOAP messages. For such messages, the functionality

provided by WS-Security is essential if confidentiality and/or

integrity are required. These are the X.509 certificate token

profile [22], the Rights Expression Language (REL) token

profile the Kerberos token profile [24], the Username Token

Profile [25], and the SAML token profile [9]. There is also a

WSS: SOAP Messages with Attachments (SwA) Profile,

which is applicable to SOAP 1.1 but not to SOAP 1.2. We can

use SHA-1 algorithm for implementing the security [20].

SHA-1-algorithm or rather function would be helpful in our

project to maintain the security of information (contact details

and passwords), so that even our integral parts such as

administrator wouldn’t be able to view such information.

Description: SHA-1 produces a 160-bit message digest based

on principles similar to those used by Ronald L. Rivest of MIT

in the design of the MD4 and MD5 message digest

algorithms, but has a more conservative design. The original

specification of the algorithm was published in 1993 as the

Secure Hash Standard, FIPS PUB 180, by US government

standards agency NIST (National Institute of Standards and

Technology). This version is now often referred to as SHA-0.

One iteration within the SHA-1 compression function: A, B,

C, D and E are 32-bit words of the state; F is a nonlinear

function that varies; n denotes a left bit rotation by n places; n

varies for each operation;Wt is the expanded message word of

round t; Kt is the round constant of round t; SHA-1 differs

from SHA-0 only by a single bitwise rotation the message

schedule of its compression function; this was done, according

to NSA, to correct a flaw in the original algorithm which

reduced its cryptographic security. However, NSA did not

provide any further explanation or identify the flaw that was

corrected. Weaknesses have subsequently been reported in

both SHA-0 and SHA-1. SHA-1 appears to provide greater

resistance to attacks, supporting the NSA’s assertion that the

change increased the security.

1) The Username Token Profile: The Username Token profile

[25] specifies how the Username Token can be used as a

means to identify a requester by username. A password, or

some sort of shared secret constituting a password equivalent,

may also be included. Passwords may be included in their

original form or as a SHA-1 digest. In order to prevent replay

attacks, The SHA-1 password digest is to be calculated over

the nonce, timestamp, and password, thus, both the sender

and the receiver need to know the plaintext password or

password equivalent.

2) The X.509 Certificate Token Profile: The X.509 certificate

token profile [22] defines how to include X.509 certificates in

SOAP messages. Such certificate tokens may be used to

validate the public key used for authenticating the message or

to specify the public key, which was used to encrypt the

message (or more commonly to convey the secret key used to

encrypt the message). When the X.509 certificate is used to

authenticate the sender, ownership of the certificate token is

proved by signing the message using the corresponding

private key.

3) The Rights Expression Language (REL) Token Profile:

The Rights Expression Language (REL) token profile [23]

defines how to include ISO/IEX 21000-5 Rights Expressions

in SOAP messages. In the context of XML and Web services,

the Rights Expression Language is also known as the XML

Rights Management Language (XrML). Although a technical

committee was formed within OASIS in order to standardize

XrML, this committee was disbanded before reaching an

agreement on a standard. The SAML Token Profile: The

SAML token profile [26] defines how to include SAML

assertions within security headers and how to reference these

assertions from within the SOAP message. A binding between

a SAML token and the SOAP message (and its sender) can be

created by signing the message with a key specified within the

SAML assertion.[2] Alternatively, an attesting entity that the

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

36

receiver trusts may vouch for the message being sent on behalf

of the subject for whom the assertion statements apply. In this

latter case, the attesting entity must ensure the integrity of the

vouched for SOAP message (e.g., by applying a digital

signature). SAML is discussed in more detail in Section V-B.

5) The Kerberos Token Profile: The Kerberos token profile

[24] defines how to attach Kerberos tickets to SOAP

messages.

The specification is limited to the Kerberos AP-REQ message

[28], allowing a client to authenticate to a service. Like with

the X.509 certificate token, ownership of the token is proved

by signing the message using the corresponding key. How the

AP-REQ is to be obtained is outside the scope of the profile,

but such functionality is provided by the Kerberos

specification and might also be provided using WS-Trust.

6) The Basic Security Profile: The Web Services

Interoperability Organization (WS-I) has also defined another

related profile called the Basic Security Profile [26]. This

profile provides clarifications, and requirements, on how

WS-Security and its associated profiles should be

implemented in order to promote interoperability. Because

WS-Security makes use of XML Signature and XML

Encryption, the Basic Security Profile also applies to XML

Signature and XML Encryption when these are used with

WS-Security.

IV. PERFORMANCE MANAGEMENT

The system supports multiple classes of web services

traffic and allocates server resources dynamically so to

maximize the expected value of a given cluster utility

function in the face of fluctuating loads. The cluster utility is

a function of the performance delivered to the various

classes, and this leads to differentiated service. In this paper,

we will use the average response time as the performance

metric. The management system is transparent: it requires

no changes in the client code, the server code, or the network

interface between them. The system performs three

performance management tasks: resource allocation, load

balancing, and server overload protection. We use two

nested levels of management. The inner level centers on

queuing and scheduling of request messages. The outer level

is a feedback control loop that periodically adjusts the

scheduling weights and server allocations of the inner level.

The feedback controller is based on an approximate

first-principles model of the system, with parameters derived

from continuous monitoring. We focus on SOAP-based web

services [22]. This system allows service providers to offer

and manage SLAs for web services. The service provider

may offer each web service in different grades, with each

grade defining a specific set of performance objective

parameters. For example, the Stock Utility service could be

offered in either premium or basic grade, with each grade

differentiated by performance objective and base price. A

prototypical grade will say that the service customers will

pay $10 for each month in which they request less than 100

000 transactions and the 95th percentile of the response

times is smaller than 5 s, and $5 for each month of slower

service. Our management system allocates resources to

traffic classes and assumes that each traffic class has a

homogeneous service execution time. We introduce the

concept of class to separate operations with widely differing

execution time characteristics. For example, the Stock

Utility service may support the operationsgetQuote () and

buy Shares ().

The fastest execution time for get Quote () could be 10 ms,

while the buy Shares () cannot execute faster that 1 s. In such

a case, the service provider would map these operations into

different classes with different set of response time

goals.[22] We also use the concept of class to isolate specific

contracts to handle the requests from those customers in a

specific way. Figure 5 shows the system architecture. The

main components are a set of gateways, a global resource

manager, a management console, and a set of server nodes

on which we deploy the target web services. We use

gateways to execute the logic that controls the request flow,

and we use the server nodes to execute the web services

logic. Gateway and server nodes are software components.

We usually have only one gateway per physical machine

and, in general, we have server nodes and gateways on

separate machines. The simplest configuration is one

gateway and one server node running on the same physical

machine. In this paper, all server nodes are homogeneous

and that every web service is deployed on each server. We

can deal with heterogeneous servers by partitioning them

into disjoint pools, where all the servers in a given pool have

the same subset of web services deployed, and where the

traffic classes are also partitioned among the pools. The

servers, gateways, global resource manager, and console

share monitoring and control information via a

publish/subscribe network [23].

Client

Fig. 5 Performance Management for Clustered Based

Web Services.

Swit

ch-

L4

Gatewa

y

Serve

r

Node

Publish /Subscribe Control

Network

Management

Console

Global Resource

Manager

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

37

A. Gateway: We use gateways to control the amount of

server resources allocated to each traffic class. By

dynamically changing the amount of resources, we can

control the response time experienced by each traffic class.

We denote Ng,s with the maximum number of concurrent

requests that server executes on behalf of gateway . We also

Use Wg,c to describe the minimum number of class requests

that all servers will execute on behalf of gateway . We refer

to Wg,c as server shares. In Section IV, we will describe

how we compute Wg,c and Ng,s , while in this section, we

describe how gateway enforces the Wg,c and Ng,s

constraints. For each gateway , we use Wg and Ng to denote

the following:

Where C and S denote the set of all classes and servers,

respectively. We have used Axis [22] to implement all our

gateway components, and we have implemented some of the

mechanisms using Axis handlers, which are generic

interceptors in the stream of message processing. Axis

handlers can modify the message, and can communicate

out-of-band with each other via an Axis message context

associated with each SOAP invocation (request and response)

[22]. When a new request arrives a classification handler

determines the traffic class of the request. The mapping

functions use the request metadata (user id, subscriber id,

service name, etc.). In our implementation, the classification

handler uses the user and SOAP action fields in the HTTP

headers as inputs, and reads the mappings from configuration

files. We avoid parsing the incoming SOAP request to

minimize the overhead. After we classify the requests, we

invoke the queue handler, which in turn contacts a queue

manager. The queue manager implements a set of logical

FIFO queues one for each class. When the queue handler

invokes the queue manager the queue manager suspends the

request and adds the request to the logical queue

corresponding to the request’s class. The queue manager

includes a scheduler that runs when a specific set of events

occurs and selects the next request to execute. The queue

manager on g gateway tracks the number of outstanding

requests dispatched to each server and makes sure that there

are at most Ng requests concurrently executing on all the

servers. When the number of concurrently outstanding

requests from gateway is smaller than Ng the scheduler selects

a new request for execution. The scheduler uses a round-robin

scheme. The total length of the round-robin cycle Wg is and

the length of class interval is Wg,c .We use a dynamic

boundary and work conserving discipline that always selects a

nonempty queue if there is at least one. The dispatch handler

selects a server and sends the request to the server, using a

protocol defined by configuration parameter. Our

implementation supports SOAP over HTTP and SOAP over

JMS. The dispatch handler distributes the requests among the

available servers using a simple load balancing discipline,

while enforcing the constraint that at most Ng,s requests

execute on server concurrently on behalf of gateway . When a

request completes its execution, the response handler reports

to the queue manager the completion of the request’s

processing. The queue manager uses this information to both

keep an accurate count of the number of requests currently

executing and to measure performance data such as service

time. The gateway functions may be run on dedicated

machines, or on each server machine. The second approach

has the advantage that it does not require a sizing function to

determine how many gateways are needed, and the

disadvantage that the server machines are subjected to load

beyond that explicitly managed by the gateways.

B. Global Resource Manager and Management Console

The global resource manager computes Ng,s the maximum

Number of concurrent requests that each server executes on

Behalf of each gateway, and it computes Wg,c the minimum

Number of class requests that all servers will execute on the

behalf of each gateway.

Represents the total amount of

resources allocated to gateway , while Wg,c is the portion

of that dedicated to class . Given these two sets of parameters,

a gateway is able to perform WRR scheduling, and load

balancing. The global resource manager runs periodically and

computes the resource allocation parameters every time

interval Γi which we define as the th control horizon. The

global resource manager computes Ng,s and Wg,c that each

gateway will use during the control horizon using the resource

allocation parameters computed in the control horizon Γi-1 as

well request and server utilization statistics measured in

during Γi-1. The size of the control horizon affects the ability

of the global resource manager to respond to rapid changes in

the traffic load or response time. On the one hand, when Γi is

small, the resource allocation parameters are updated

frequently which make the system more adaptive. On the

other hand, a larger value of Γ increases the stability of the

system. The global resource manager inputs and outputs. In

addition to real-time dynamic measurements, the global

resource manager uses resource configuration information,

and the cluster utility function. The cluster utility function

consists of as a set of class utility functions and a combining

function. Each class utility function maps the performance for

a particular traffic class into a scalar value that encapsulates

the business importance of meeting, failing to meet or

exceeding the class service level objective. A combining

function combines the class utility function into one cluster

utility function. We have implemented two combining

functions: sum and minimum. Other combining function on

the structure of the solution. The global resource manager

may assume the responsibility of computing the capacity Ns of

each server .Ns represents the maximum number of web

services requests that server can execute concurrently. The

global resource manager should select Ns to be large enough

to efficiently utilize the server’s physical resources, but small

enough to prevent overload and performance degradation.

The global resource manager may use server utilization data

to determine the value of Ns. The global resource manager

partitions Ns among all gateways and classes. The global

resource manager uses Wg,c to describe the minimum number

of class c requests that all servers will execute on behalf of

gateway . The global resource manager uses a queuing model

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

38

of the system to predict the performance that each class would

experience for each given allocation Wg,c The global resource

manager implements a dynamic programming algorithm to

find the Wg,c that maximize the cluster utility function. After

the global resource manager computes a new set of Wg,c and

Ng,s values, it broadcasts them on the control network. Upon

receiving the new resource allocation parameters each

gateway switches to the new values of Wg,c and Ng,s. The

management console offers a graphical user interface to the

management system. Through this interface the service

provider can view and override all the configuration

parameters. We also use the console to display the

measurements and internal statistics published on the control

network. Finally, we can use the console to manually override

the control values computed by the global resource manager.

V. CONCLUSION

We have tried to do extensive literature survey to provide

efficient service discovery approach from the service

consumer’s perspective. After studying the discovery

requirements, we identify from literature that the service

consumers do prefer attaining the similar Web services and

the potentially composible Web services, according to their

desired inputs and outputs. These services should be

organized in a universal access channel, instead of enforcing

the users to search and view them individually. These

services are known as as “homogeneous” Web service

community. Moreover, in the user-centric Web

environment, the users may want to subscribe these services

as RSS/Atom feeds, which is much easier than using UDDI.

We studied the secured approach for accessing web services

by using SHA-1 algorithm to provide a flexible framework

for fulfilling basic security requirements. This security can

be enhanced by cryptanalysis of the used cryptographic

algorithms so that in future robust algorithms can be

proposed for security of the web applications. For the

analysis and design of the web application, we can propose

the secure web life cycle.

 REFERENCES
[1] Xuanzhe Liu, Gang Huang, “Discovering Homogeneous Web

Service Community in the User-Centric Web Environment”,

Member, IEEE, and Hong Mei, Senior Member, , IEEE

Transactions On Services Computing, Vol. 2, No. 2,

April-June 2009

[2] Nils Agne Nordbotten,” XML and Web Services Security

Standards”, IEEE COMMUNICATIONS SURVEYS &

TUTORIALS, VOL. 11, NO. 3, THIRD QUARTER 2009

[3] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing.

Springer and Tsinghua Univ. Press, July 2007.

[4] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,

“Similarity Search for Web Services,” Proc. 30th Very Large

Database Conf. (VLDB ’04), 2004.

[5] C. Petrie, “The Myth of Open Web Services: The Rise of the

Service Parks,” IEEE Internet Computing, vol. 12, no. 3, pp.

93-95, May/June 2008.

[6] X. Liu, G. Huang, and H. Mei, “Consumer-Centric Service

Aggregation: The Method and Framework,” J. Software, vol.

18, no. 8, pp. 1883-1895, Aug. 2007.

[7] X. Liu, L. Zhou, G. Huang, and H. Mei, “Consumer-Centric

Web Service Discovery and Subscription,” Proc. Int’l Conf.

e-Business Eng. (ICEBE ’07), pp. 543-550, 2007.

[8] X. Liu, L. Zhou, G. Huang, and H. Mei, “Towards a Service

Pool Based Approach for QoS-Aware Web Services Discovery

and Subscription,” Proc. ACM 16th Int’l Conf. World Wide

Web (WWW’07), pp. 1253-1254, May 2007.

[9] G. Huang, X. Liu, and H. Mei, “SOAR: Towards Dependable

Service-Oriented Architecture via Reflective Middleware,”

Int’l J. Simulation and Process Modeling, vol. 3, nos. 1/2, pp.

55-65, 2007.

[10] L.-J. Zhang, S. Erickson, and J. Roy, “A Web 2.0 Tune-Up,”IT

Professional, vol. 9, no. 3, p. 9, May/June 2007.

[11] E. Al-Masri and Q.H. Mahmou, “Investigating Web Services

on the World Wide Web,” Proc. 17th World Wide Web Conf.,

pp. 795-804, Apr. 2008.

[12] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F.

Toumani, “On Automating Web Service Discovery,” VLDB

J., vol 14, no. 11,pp. 84-96, 2004.

[13] J. Rao and X. Su, “A Survey of Automated Web Service

Composition Methods,” Proc. Int’l Workshop Semantic Web

Services and Web Process Composition, pp. 43-54, 2004.

[14] M. Klusch, B. Fries, and K. Sycara, “Automated Semantic

Web Service Discovery with OWLS-MX,” Proc. Fifth Int’l

Joint Conf. Autonomous Agents and Multi agent Systems, pp.

915-922, 2006.

[15] E.M. Maximilien and M.P. Singh, “A Framework and

Ontology for Dynamic Web Services Selection,” IEEE

Internet Computing, vol. 8, no. 5, pp. 84-93, Sept./Oct. 2004.

[16] M. Zhou, S. Bao, X. Wu, and Y. Yu, “An Unsupervised Model

for Exploring Hierarchical Semantics from Social

Annotations,” Proc .Sixth Int’l Semantic Web Conf., Nov.

2007.

[17] S. Thummalapenta and T. Xie, “PARSE Web: A Programmer

Assistant for Reusing Open Source Code on the Web,” Proc.

22nd IEEE/ACM Int’l Conf. Automated Software Eng. (ASE

’07), pp. 204- 213, Nov. 2007.

[18] A.M. Zaremski and J.M. Wing, “Specification Matching of

Software Components,” ACM Trans. Software Eng. and

Methodology, vol. 6, pp. 333-369, 1997.

[19] Y. Hao and Y. Zhang, “Web Services Discovery Based on

Schema Matching,” Proc. 13th Australian Computer Science

Conf. (ACSC ’07), pp. 107-113, Jan./Feb. 2007.

[20] E. Rahm and P.A. Bernstein, “A Survey on Approaches to

Automatic Schema Matching,” VLDB J., vol. 10, no. 4, pp.

334- 350, 2001.

[21] H.H. Do and E. Rahm, “COMA: A System for Flexible

Combination of Schema Matching Approaches,” Proc. Very

Large Database Conf. (VLDB ’02), 2002.

[22] Giovanni Pacifici, Senior Member, IEEE, Mike Spreitzer,

Asser N. Tantawi, Senior Member, IEEE, “Performance

Management for Cluster-Based Web Services”, ieee journal

ISSN: 2277-3754
ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT)

Volume 1, Issue 6, June 2012

39

on selected areas in communications, vol. 23, no. 12,

December 2005

[23] E. Bouillet, M. Feblowitz, H. Feng, Z. Liu, A. Rang Nathan,

and A. Riabov, “A Folksonomy-Based Model of Web Services

for Discovery and Automatic Composition,” Proc. IEEE Int’l

Conf. Services Computing (SCC ’08), pp. 389-396, July 2008.

[24] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction

to Algorithms. MIT Press, 2001.

[25] J. Snell, Advertise Web Services with Atom 1.0,

http://www-128.ibm.com/developerworks/webservices/librar

y/ws-atomwas/, 2009.

[26] W3C, OWL-S: Semantic Markup for Web Services,

http://www.w3. Org/Submission/OWL-S/, Nov. 2004.

AUTHORS PROFILE

 Mr. D.R. Ingle (ISTE LM’2004) is Associate

Professor of Computer Engineering Department at

Bharati Vidyapeeth College of Engineering,

NaviMumbai, Maharastra state, India. He received

bachelor degree, and Master degree in computer

engineering. He has participated in more than 10

refresher courses to meet the needs of current

technology. He has contributed more than 20 research

papers at national, International Journals. He is life

member of Indian Society of Technical Education.

His areas of interest are in Databases, intelligent

Systems, and Web Engineering.

Dr. B.B.Meshram (CSI LM’95, IE ’95) is

Professor and head of Computer Technology

Department at VJTI, Matunga, Mumbai,

Maharastra state, India. He received bachelor

degree, Master degree and doctoral degree in

computer engineering. He has participated in more

than 30 refresher courses to meet the needs of

current technology. He has chaired more than 15

AICTE STTP Programs and conferences. He has

received the appreciation for lecture at Manchester and Cardip University, UK.

He has contributed more than 200 research papers at national, International

Journals. He is life member of computer society of India and Institute of

Engineers. His current research interests are in Databases, data warehousing,

data mining, intelligent Systems, Web Engineering and network security.

